

GRADE: XII	MT 3 (2024-25) APPLIED MATHEMATICS	Marks: 20
Date:		lime: 1
05/11/2024		nours

Name:

Class & Section:

Q.No	Questions	Mark
	SECTION A	
1	Find $\frac{dy}{dx}$, <i>if</i> $x^2 - y^2 - 5 = 0$	1
	a) $\frac{x}{y}$ c) 2y	
	b) 2x d) 0	
2	Find $\frac{dy}{dx}x^2$	1
	a) x c) 0	
	b) 2x d) 2	
3	Find the second order derivative of $ax^3 + bx^2 + cx + d$ a) $3ax+2bx+c$ b) $6ax+2b$ c) $3ax^2 + 2bx + c$ d) $3a+b$	1
4	Find the derivative of $x^2 \cdot e^x$	1
	C) $x^2 \cdot e^x + e^x \cdot 2x$ C) $x \cdot e^x + x^2 \cdot 2x$	
	d) $x^2 \cdot xe^x + e^x \cdot 2x$ d) none of the above	
5	A function is said to be strictly increasing on an open interval (a,b) if a) $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ b) $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ c) $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$ d) $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$	1

	SECTION B	
6	Find the interval in which the function is strictly increasing $f(x) = 5 + 36x + 3x^2 - 2x^3$ $F'(X) = 36 + 6x - 6x^2 = -6(x-3)(x+2)$ The function $f(x)$ will be strictly increasing if $f'(x) > 0$ -6(x-3)(x+2) > 0 x > 3 and $x < -2f(x)$ is strictly increasing for $-2 < x < 3The function f(x) will be strictly increasing if f'(x) < 0-6(x-3)(x+2) < 2x > 3$, x < -2 f(x) is strictly decreasing for $x < -2$ or $x > 3$	2
7	Divide 30 into two parts such that their product is maximum P= x(30-x) dp/dx = 30-2x dp/dx =0 30-2x=0 X=15 $\frac{d^2p}{dx^2} = -2$ P is maximum when First part = 15 Second part= 15	2
8	If the cost function is $C = 40 - 6x + x^2$, find the minimum value of cost C? dC/dx = $-6+2x$ minimum: dC/dx =0 -6+2x=0 X=3 $\frac{d^2C}{dx^2} = 2 > 0$ C is minimum when x=3 Then C= 31	2
	SECTION C	
9	Find the local maximum and local minimum values, if any of the function	3

	$y = \frac{x^4}{x-1}, x \neq 0$ dy/dx = $x^3(3x - 4)/(x - 1)^2$ max or min , dy/dx= 0 = x= 0, 4/3 At x=3 X strictly <0 dy/dx= +ve X strictly >0 dy/dx = -ve F(x) has a local maximum at x=0 Local max value at x=0 F(0)=0 At x= 4/3 X strictly <4/3 dy/dx= -ve X strictly >4/3 dy/dx = +ve F(x) has a local maximum at x=0 Local min value at x=4/3 Loc min value = 256/27	
10	The total revenue received from the sale of x units of a product is given by $R(x) = 200 + \frac{x^2}{5}$ Find i) The average revenue= $200/x + x/5$ ii) The marginal revenue= $2x/5$ iii) The marginal revenue when x=25 10	3
11	Case study An architecture design an auditorium for a school for its cultural activities. The floor of the auditorium is rectangular in shape and has a fixed perimeter P. Based on the above information solve the following questions:	
	 i) If x and y represents the length and breadth of the rectangular region, then relation between the variable is: a) x + y = P b) x² + y² = P² 	1

iii) Prepared by	c) $A = \frac{1 \times 2x}{2}$ d) $A = \frac{x^2}{2} + Px^2$ School manager is interested in maximising the area of the floor A for this to be happen, the value of x should be: a) P b) $\frac{P}{2}$ c) $\frac{P}{3}$ d) $\frac{P}{4}$ Checked by TESSY ROY	1 1 /ARGHESE
ii)	c) $2(x + y) = P$ d) $x + 2y = P$ The area A of the rectangular region, as a function of x, can be expressed as: a) $A = Px + \frac{x}{2}$ b) $A = \frac{Px + x^2}{2}$ c) $A = \frac{Px - 2x^2}{2}$ d) $A = \frac{x^2}{2} + Px^2$	1